Thursday, 10 December 2015

Spark & Scala Training in hyderabad @ ORIENIT

Spark & Scala Training in hyderabad @ ORIENIT

Call for free demo @ 040 6514 2345 / 970 320 2345

Demo time : 19th Dec 2015 10:00AM

Course content: http://www.kalyanhadooptraining.com/2015/11/apache-spark-scala-training-in.html

Address : Flat No 204, Annapurna Block, Aditya Enclave, Ameerpet, Hyderabad - 500038








Spark & Scala Training in hyderabad @ ORIENIT

Call for free demo @ 040 6514 2345 / 970 320 2345

Demo time : 19th Dec 2015 10:00AM

Course content: http://www.kalyanhadooptraining.com/2015/11/apache-spark-scala-training-in.html

Address : Flat No 204, Annapurna Block, Aditya Enclave, Ameerpet, Hyderabad - 500038






Tuesday, 8 December 2015

Apache Spark & Scala Training in Hyderabad @ ORIENIT

Apache Spark & Scala Content

Introduction to Big Data
What is Big Data
Challenges with Big Data
Batch Vs. Real Time Big Data Analytics
Batch Analytics
    • Hadoop Ecosystem Overview
Real Time Analytics
    • Streaming Data - Storm
    • In Memory Data - Spark

Introduction of Spark
What is Spark
Why Spark
Who Uses Spark
Brief History of Spark
Storage Layers for Spark
Unified Stack of Spark
    • Spark Core
    • Spark Sql
    • Spark Streaming
    • MLib
    • GraphX
Modes of Spark Installation

Learn Spark more ..
Installation Spark in different modes
    • Local mode
    • Pseudo mode
    • Cluster mode

Spark Architecture explanation
    • Master Slave architecture
    • Spark Driver
    • Workers
    • Executors

Working with Spark in different programming languages

Python
    • How to use 'pyspark'
    • Practical examples on spark in python

Scala
    • How to use 'spark-shell'
    • Practical examples on spark in Scala

Java
    • How to use 'Java'
    • Practical examples on spark in Java

R
    • How to use 'SparkR'
    • Practical examples on spark in R

Creating the Spark Context
Configuring Spark Context with SparkConf
Caching Overview
Distributed Persistence
Combine scala and java seamlessly
Deploying Applications with spark-submit
Verify spark jobs in Spark Web UI

Installing sbt
Building a Spark Project with sbt
Running Spark Project with sbt

Installing maven
Building a Spark Project with maven
Running Spark Project with maven

Resilient Distributed Dataset (RDD)
What is RDD
Creating RDDs
RDD Operations
    • Transformations
    • Actions
    • Lazy Evaluation
Passing Functions to Spark
    • Python, Java, Scala

Working with Key/Value Pairs
Creating Pair RDDs
Transformations on Pair RDDs
    • Aggregations
    • Grouping Data
    • Joins
    • Sorting Data
Data Partitioning
    • Determining an RDD’s Partitioner
    • Custom Partitioners

    Loading and Saving Your Data
    File Formats
      • Text, Json, csv, tsv, Object files
      • Hadoop Input and Output Formats
      Loading Data using RDD
      Saving Data using RDD
      MapReduce and Pair RDD Operations
      Scala and Hadoop Integrations

      Broadcast and Accumulators

      Accumulators
        • Introduction to Accumulators
        • Practical Examples on Accumulators
        • Creating Custom Accumulators

      Broadcast variables

        • Introduction to Broadcast variables
        • Practical Examples on Broadcast variables
        • Optimizing Broadcasts

      Apache Spark SQL
      Hive and Spark SQL Architecture explanation
      Working with Spark SQL DataFrames
      Using Spark SQL Context
      Practical examples on Spark SQL
      Integrating hive and Spark SQL
      Creating & Using SQL Hive Context
      Hive Queries through Spark
      Processing Text, JSON and Parquet Files using in Spark
      Spark SQL UDFs
      Spark SQL Performance Tuning Options
      JDBC/ODBC Server

      Apache Spark Streaming
      Spark Streaming Architecture explanation
      Transformations
      Output Operations
      Streaming UI explanation
      Performance Considerations
      Practical examples on Spark Streaming

      Apache Spark MLib
      Machine Learning Basics
      Machine Learning Algorithms
        • Classification
        • Clustering
        • Collaborative Filtering
               Performance Considerations

      Practical examples on Spark MLib

      Apache Mesos
      Introduction to Apache Mesos
      Apache Mesos Architecture explanation
      Practical Examples on Apache Mesos

      Apache Mahout
      Introduction to Apache Mahout
      Apache Mahout Architecture explanation
      Practical Examples on Apache Mahout

      Apache Storm
      Introduction to Apache Storm
      Apache Storm Architecture explanation
      Practical Examples on Apache Storm

      Apache Kafka
      Introduction to Apache Kafka
      Apache Kafka Architecture explanation
      Practical Examples on Apache Kafka

      Introduction of Scala
      What is Scala?
      Why Scala?
      Advantages of Scala?
      Using the Scala REPL(Read Evaluate print loop)
      What is Type Inference
      Interoperability between Scala and Java

      Scala using Command Line
      Installing Java & Scala
      Interactive Scala
      Writing Scala Scripts
      Compiling Scala Programs

      Basics of Scala
      Defining Variables
      Defining Functions
      String Interpolation
      IDE for Scala

      Scala Type Less, Do More
      Semicolons
      Variable Declarations
      Method Declarations
      Type Inference
      Immutability
      Reserved Words
      Operators
      Precedence Rules
      Literals
      Options
      Arrays, Lists, Ranges, Tuples

      Expressions and Conditionals
      If expressions
      If-Else expressions
      Match Expressions
      For Loops
      While Loops
      Do-While Loops
      Conditional Operators
      Enumerations
      Pattern Matching
      Using try, catch, and finally Clauses

      Functional Programming in Scala
      What is Functional Programming?
      Functional Literals and Closures
      Recursions
      Tail Calls
      Currying
      Functional Data Structures
        • Sequences,Maps,Sets
      Traversing
        • Traversal, Mapping, Filtering, Folding and Reducing
      Implicit Function Parameters
      Call by Name, Call by Value

      Object-Oriented Programming in Scala
      Class and Object Basics
      Value Classes
      Parent Types
      Constructors in Scala
      Fields in Classes
      Nested Types
      Traits as Mixins
      Stackable Traits
      Creating Traits
      Visibility Rules

      Scala for Big Data
      Improving MapReduce with Scala
      Moving Beyond MapReduce
      Categories for Mathematics
      A List of Scala-Based Data Tools

      What we are offering to you:

        • Hands on Practice on Spark & Scala Real-Time Examples.
        • Providing 1 Major project on Spark.
        • Providing 2 Mini projects on Spark.
        • Hands on installation Spark and it's relative software's in your laptop.
        • Well documented Spark & Scala material with all the topics covering in the course.
        • Well documented Spark blog contains frequent interview questions along with the answers and latest updates on BigData technology.
        • Discussing about Spark & Scala interview questions daily base.
        • Resume preparation with POC's or Project's based on your experience.